
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

ISAR IMAGING USING FOURIER AND
WAVELET TRANSFORMS

by

Armando Jorge Lucrecio

December 2007

Thesis Advisor: Brett Borden
Co-Advisor: Roberto Cristi

Approved for public release; distribution is unlimited.



THIS PAGE INTENTIONALLY LEFT BLANK



REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,

searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send

comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden,

to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204,

Arlington, Va 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

6. AUTHORS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT(maximum 200 words)

14. SUBJECT TERMS 15. NUMBER OF
PAGES

16. PRICE CODE

17. SECURITY CLASSIFI-
CATION OF REPORT

18. SECURITY CLASSIFI-
CATION OF THIS PAGE

19. SECURITY CLASSIFI-
CATION OF ABSTRACT

20. LIMITATION
OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

December 2007 Master’s Thesis

ISAR Imaging Using Fourier and Wavelet Transforms

Lucrecio, Armando

Naval Postgraduate School
Monterey CA 93943-5000

The views expressed in this thesis are those of the author and do not reflect
the official policy or position of the Department of Defense or the U.S. Government.

Approved for public release; distribution is unlimited.

We investigate the ISAR imaging model using two different approaches the Fourier and the wavelet trans-
form. Starting from the weak-scatter far-field model we explain why this approximation it’s a Fourier Transform.
We investigate the scattering mechanisms from different surfaces. We also analyze and derived the expressions
of the scatter from sphere. We briefly discuss the radon transform and why it’s not a good approach to our
problem. We investigate the results using this time-frequency methods, creating images using synthetic data.

ISAR, Fourier, Imaging, wavelets
scattering 81

Unclassified Unclassified Unclassified UU

i



THIS PAGE INTENTIONALLY LEFT BLANK

ii



Approved for public release; distribution is unlimited

ISAR IMAGING USING FOURIER AND WAVELET
TRANSFORMS

Armando Lucrecio
Lieutenant, Portuguese Navy

B. Eng., Naval Academy, Portugal 1999

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN PHYSICS

from the

NAVAL POSTGRADUATE SCHOOL
December 2007

Author: Armando Lucrecio

Approved by: Brett Borden
Thesis Advisor

Roberto Cristi
Co-Advisor

James Luscombe
Chairman, Department of Physics

iii



THIS PAGE INTENTIONALLY LEFT BLANK

iv



ABSTRACT

We investigate the ISAR imaging model using two different approaches the

Fourier and the wavelet transform. Starting from the weak-scatter far-field model we

explain why this approximation it’s a Fourier Transform. We investigate the scatter-

ing mechanisms from different surfaces. We also analyze and derived the expressions

of the scatter from sphere. We briefly discuss the radon transform and why it’s not a

good approach to our problem. We investigate the results using this time-frequency

methods, creating images using synthetic data.
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I. INTRODUCTION

A. SYNTHETIC APERTURE RADAR IMAGING

Radar is an electromagnetic instrument used for detection and localization of

targets, such as aircraft, ships and ground vehicles. It transmits energy and receives

the backscattered field energy from the target [Ref. 4]. The received signal is then

processed to extract information about bearing and distance. The radar as a ra-

dio frequency sensor can perform at long ranges with high accuracy independent of

weather conditions, in day or night.

With the advent of powerful digital signal processing algorithms, multidimensional

signal analysis and inversion in imaging systems may now be formulated via more

concrete theoretical principals. These principals will be the central topic of this the-

sis: radar technology and the powerful tools of digital signal processing (DSP) can

extract more information from the received signal than just range and bearing. In

our case, we want to be able to produce images from moving targets.

The original radar systems measured range to a target (radar scatterer) via time de-

lay, and direction of a target via antenna directivity. In the past, Doppler shifts were

used to measure target speed only, until it was discovered that Doppler shifts could be

processed to obtain fine resolution in a direction perpendicular to the range or beam

direction. Through this latter concept, often credited to Carl Wiley of Goodyear

Aerospace in 1951, it was found that two-dimentional images could be made of the

targets and of the earth’s surface using radar. The method was termed Synthetic

Aperture Radar (SAR), referring to the concept of creating the effect of a very long

antenna by signal analysis [Ref. 2]. The ability to view or capture a scene improves

with a larger aperture (in a binocular or camera), a larger radar antenna aperture,

or larger acoustic transducer aperture; the key to better vision is a larger aperture.

Unfortunately, it is extremely difficult to either build or maintain a physically large

aperture radar system.
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The principal idea behind SAR is to synthesize the effect of a large physical aperture

radar, whose construction is infeasible. The significance of a larger aperture becomes

evident in the following example:

The lateral or cross-range resolution of a D = 1 meter diameter radar antenna with

wavelength λ = 1 meter at the range R = 1000 meters is

Lateral-resolution =
Rλ

D
= 1000 meters, (I.1)

which is very poor. Yet, based on the SAR Theory and signal processing, if we move

this small 1 meter aperture radar along a synthetic aperture with length Deff=1000-

meters (Deff stands for effective radar diameter or aperture), then the lateral reso-

lution with wavelength λ = 1 meter at the range R = 1000 meters becomes

Lateral-resolution =
Rλ

Deff

= 1 meter, (I.2)

This is a tremendous improvement over the 1000 meter lateral resolution of the small

1 meter physical radar antenna. The aperture of Deff = 1000 meters is called a

synthetic aperture [Ref. 3].

When SAR data are collected by the radar system, the data appear to be quite

unfocused. In fact, the received data look much like random noise. As in a hologram,

the essential information lies in the phase of the received data, and phase-sensitive

processing is needed to obtain a focused image [Ref. 2]. In the 1950s and 1960s, the

science of remote sensing was developing in the civilian community. From the origins

of aerial photography, digital scanners using several optical frequency bands were

installed in aircraft and satellites, and people began developing uses for the detailed

wide-area images of the Earth’s surface that were acquired. Military SAR technology

was released to the civilian community in the 1970s, and remote sensing scientists

found that SAR images provided a complementary and useful addition to their optical

sensors [Ref. 2]. Since synthetic aperture imaging was originally introduced for radar

systems, this technology has been used for different military applications shown in

table A.
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• Automatic Aircraft Landing
• Mine detection
• Concealed target detection in foliage
•Interior imaging of Buildings in a rescue or hostage crisis
• Missile detection and tracking
• Ground moving target detection and tracking
•Airborne Reconnaissance

Table I. Military applications of SAR technology

In this thesis we will focus on - Airborne Reconnaissance.

There are two classes of SAR imaging systems: spotlight SAR; and stripmap SAR. In

spotlight SAR the moving radar platform stares at a specific location (usually on the

ground) so that at each point in the flight path the same target is illuminted from

different directions. The locus of equal range points is determined by the intersection

of the radiating spherical wave and the ground. When the ground is assumed to be a

plane, these points will form a circle. If the radar antenna beamwidth is narrow and

the spot is sufficiently far away, then the data are collected on small arcs that can

be approximated as lines. Consequently, the imaging method is mathematically the

same as that used in Inverse Synthetic Aperture Radar (ISAR) (see Figure 1)

Figure 1. In spotlight SAR the radar is trained on a particular location as the radar
platform moves. In this figure the equi-range circles (dotted lines) are formed from
the intersection of the radiated spherical wavefront and the surface of a (flat) Earth.
This Figure is taken from [Ref. 11]
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In contrast, stripmap SAR sweeps the radar beam along with the platform

without staring at a particular location on the ground (see Figure 2). The equi-range

points are still circles, but the data model based on simple rotation is no longer

valid. In fact, since radar doesn’t stare at the same location, effective stripmap

reconstruction will require wide radar beamwith [Ref. 11].

Figure 2. Stripmap SAR acquires data without staring.The radar typically has fixed
orientation with respect to the platform and the data are acquired as the beam
footprint sweep over the ground. This Figure is taken from [Ref. 11]

In this thesis we will address the construction of ISAR images using two dif-

ferent approaches: Fourier and Wavelet transforms. This thesis will be organized as

following: In chapter two we will derive the weak-scatter far-field model. In chapter

three we will discuss the Radon transform. In chapter four we will address the differ-

ence between the Fourier and the wavelet transforms. In chapter five we will discuss

the algorithms and how to construct ISAR images using the two approaches. Finally,

in the sixth chapter we will summarize our conclusions.
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II. THE RADAR SCATTERING MODEL

A. WEAK-SCATTER FAR-FIELD MODEL

As always we need to start from a mathematical model, to describe what is

happening in reality. In our case we are interested in the backscatter field from the

target after being illuminated by an electromagnetic wave.

Figure 3. Geometry of the radar imaging of a target. This picture was taken from
[Ref. 11]

Let’s assume that our incident field is of the form,

H inc = H0e
i(kR·r−wt) (II.1)

where H = B
µ

is the constitutive relation, B is the Magnetic Field, µ is the Magnetic

permeability and k is the wave number. If we assume the target to be a perfect

conductor (current just on the surface) and that its surface is smooth, then after

some algebra we can define the scatter field from a target as follows, [Ref. 11]

Hscatt(R, t : k) =
ikH0e

i(2kR−wt)

(2π)3R

∫
V
ρk,R̂(x′)e

i2kR̂·x′
dx′dy′dz′ (II.2)

This is called the weak-scatterer far-field model. The function ρk,R̂(x′) is defined as

a generalized scatterer density function which will generally depend on k and R̂. It
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can be shown that the integrand of equation (II.2) is the far field pattern F (θ, φ).

This is why (II.2) is called the weak-scatter far-field model. We are interested in this

expression because from Hscatt we can extract information about the target of interest

by estimating various functions closely related to ρk,R̂. For our purposes, (the imaging

case), it’s useful to define a cartesian coordinate system fixed to the target. This

coordinate system will move accordingly with the target as it maneuvers. Another

assumption is that the target moves as a rigid body and that its instantaneous axis

of rotation has a component k̂ ⊥ R̂. To describe rotations of the target , we need

to introduce a new reference frame by defining the directions î and ĵ in terms of the

rotation angle θ by î · R̂ = sinθ and θ by ĵ · R̂ = cosθ: these are the cross-range and

down-range directions, respectively (see Figure 3).

Now using the new coordinates, equation(II.2) can be written as

Hscatt(R, t : k) =
ikH0e

i(2kR−wt)

(2π)3R

∫
V
ρk,R̂(x′)e

i2k(y′cosθ−x′sinθ) dx′dy′dz′ (II.3)

and x′ = x′ı̂ + y′̂ + z′k̂. This is the standard target model used in radar imaging

analysis. We know that ρk,R̂ depends on k and R̂, this dependence which is often

treated as insignificant over the span of R̂, and the ranges of k obtainable from con-

ventional radar systems. This dependence is typically ignored. This approximation

allows us to exploit equation II.3 as a Fourier transform relationship between Hscatt

and ρ ≡ ρk,R̂. The Fourrier transform is very convenient for practical object function

estimation, but this approximation turns out to cause significant problems in image

interpretation [Ref. 11].

Radar targets, especially man made targets, can be considered as a collection

of point scatterers. The behavior of these scatterers has a vast variety of reflecting

and back-scattering types. They can be edges, corners, circles, cavities, squares (see

Figure 5)
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Figure 4. Scatter mechanism. This picture was taken from [Ref. 12]

Figure 5. Different back-scattering behavior

B. SCATTERING FROM A SPHERE

To better understand how scattering depends on frequency let’s introduce the

simple example of scattering from a sphere. Assuming a plane harmonic wave of

frequency ω (with k = ω
c
) and traveling along the z axis is incident on a perfectly

conducting sphere of radius a. Let’s determine the physical optics contribution to the

scattered field and the associated scattering cross-section of the sphere with radius

r=1.

Hscatt(R, t : k) =
ikH0e

i(2kR−wt)

2πR

∫
R̂·n̂<0

R̂ · n̂ei2kR̂·x′
dS ′ (II.4)
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where r̂ = n̂ = r sin θ cosφî+ r sin θ sinφĵ + r cos θk̂ (in spherical coordinates)

R̂ = k̂ (II.5)

n̂ · R̂ = r cos θ = cos θ (II.6)

R̂ · x′ = R̂ · an̂ = a cos θ (II.7)

since just half of the sphere is visible

∫
R̂·n̂<0

R̂ · n̂eikR̂·x′
dS ′ = 2πa2

∫ π
2

0

cosθei2ka cos θ sin θdθ (II.8)

Making now the substitution cos θ = u and − sin θdθ = du we obtain

∫
R̂·n̂<0

R̂ · n̂eikR̂·x′
dS ′ = 2πa2

∫ π
2

0

uei2kaudu (II.9)

After some algebra we find the result of this integral to be

∫
R̂·n̂<0

R̂ · n̂eikR̂·x′
dS ′ = 2πa2 1− ei2ka + 2ei2kaika

i24k2a2
(II.10)

therefore

Hscatt(R, t : k) = −ikH0e
i(2kR−wt)

2πR
2πa2 1− ei2ka + 2ei2kaika

4k2a2
(II.11)

which reduces to

Hscatt(R, t : k) =
iH0ae

i(2kR−wt)

4kaR
(1− ei2ka + 2ei2kaika) (II.12)

We define the radar cross-section σ by

σ

πa2
≈ |Hscatt|2
|H0|2

1

πa2
(II.13)

where H0 is the incident field [Ref. 11].

8



Figure 6 shows the basic regions characterizing the radar cross section of a

sphere. The optical region (often called the Fraunhofer region) applies when 2πr
λ

& 10.

In this region, the cross-section is independent of frequency. At point A of Figure 6

we have a perturbation , the largest one, that would be 4 times higher than the cross

section found in the optical region. A minimum also occurs at point B where the

cross section would be 0.26 times the value in the optical region formula. This area

is known as Mie or resonance region. There is another region where the diameter

of the sphere is smaller than the wavelength: the Rayleigh region. As we can see,

the cross-sectional is smaller than in the other regions and this happens because the

wavelength is larger than the sphere, therefore, the scattered field in the direction of

the sensor is very weak. Rayleigh scattering is important in weather radar.

In our case we will be in the optical region because the bandwidth to be used in

the test cases is from 8.75GHz-9.25Ghz. The wavelength is of the order of the order

of 3cm, so, sufficient to detect parts of airplanes, ships, cars . As we saw in the

Figure 6. Coss-section plot on a log-log scale as a function of kr
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weak-scatter far-field model, because we are in the optical region we will have some

artifacts in the images crated by corner reflections, inlet engines and other types of

undesired reflections from other geometrical shapes of the target.

C. IMAGING FROM WEAK-SCATTERER FAR-FIELD
DATA USING FOURIER ANALYSIS

We can see from the weak-scatter far-field model of equation II.14 that the

data is similar to a Fourier transform. In fact it is.

{
Fρθ

}
(ω) =

1√
2π

∫ ∞
−∞

∫ ∞
−∞

ρ(x, y)eiω(xsinθ−ycosθ)dxdy (II.14)

In this approach we will take data over a small aperture ∆θ with 0 ≤ θ ≤ ∆θ � 1.

The small angle approximation sinθ ≈ θ and cosθ ≈ 1 implies

{
Fρθ

} ≈ (ω)
1√
2π

∫ ∞
−∞

∫ ∞
−∞

ρ(x, y)eiω(xθ−y)dxdy (II.15)

As we can see now the exponential in the equation II.15 has linear argument, since

kx = ωθ and ky = ω and so this equation can now be inverted using Fourier analysis:

From the frequency domain data set
{
Fρθ

} 7→ P (kx, ky), can be recovered as ρ(x, y)

ρ(x, y) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

P (kx, ky)e
i(kxx−kyy)dkxdky (II.16)

For reference purposes we switch x and y in the exponential argument from the

weak-scatter far-field model and equation II.15 we label the cross range coordinate

as x and the down-range coordinate as y.

The data set mapping
{
Fρθ

} 7→ P (kx, ky) is based on the transformation kx = ωθ

and ky = ω. If we consider ky = ω to be a radial direction in the data space, then

it’s easy to see that kx = ωθ = Kyθ is an arclength for fixed ky. As was mentioned

before, we are assuming small angles because our data set will be collected over a

small angle grid in polar coordinates (see Figure 7).

We know that equation (II.16), on the other hand, is a two-dimensional Fourrier

10



transform formula appropriate to data defined on a rectangular grid — that is, in

this approach the data is processed on a rectangular grid but collected on a polar one

[Ref. 11].

Figure 7. Data space used in the image recovery equation (II.16). Here ky = ω is a
polar direction and ky = ωθ is an arclength (for each ω). This picture was taken from
[Ref. 11]

Figure 8. Radar Signals capture method. This picture was taken from [Ref. 12]
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When ω is large and the aperture is sufficiently small, the polar grid is pretty

close to rectangular in shape. But in the general case, the measured data must be

interpolated to a rectangular grid before equation II.16 can be applied (an illustration

is in Figure 9). In the radar community, this additional preprocessing step is known

as focussing [Ref. 11].

Figure 9. Data interpolation from a polar grid to a rectangular grid. This picture
was taken from [Ref. 11]

One of the relevant aspects is the resolution of the image: equation (II.16) gives

us the means to evaluate the resolution of the reconstructed image. This equation is

the Fourier domain version of a convolution with an imaging kernel determine by the

inverse Fourier transform of k(kx, ky) = ei(kx+ky).

Since we deal with finite bandwidth signals, the spatial-domain version of this imaging

Kernel is a product of sinc functions and the width of the central lobes provides an

estimate of the resolution. The dimensions ∆x and ∆y of a resolution cell can be

estimated as

∆x ≈ 2π

∆kx
≈ 2π

ω∆θ
(II.17)

∆y ≈ 2π

∆ky
≈ 2π

∆ω
(II.18)
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where ω is the average frequency, ∆θ represents the aperture size, and ∆ω denotes

the bandwidth[Ref. 11]. We can see that the down-range resolution depends on the

bandwidth and the cross-range resolution depends on the aperture size, scaled by

frequency. Don’t forget we are using the small angle approximation and it’s because

of that assumption that this analysis is valid. This method will be used on test cases

in the following chapters and analyzed concerning the pros and cons of this technique.

Figure 10. Standard Fourier image. This Figure was taken from [Ref. 13]
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III. RADON TRANSFORM

A. PRELIMINARY DISCUSSION

The objective of our work is to obtain range and cross range target information

from High Range Resolution (HRR) data. To understand how to achieve this goal,

let’s examine a data model for an impulsive signal (ideal short pulse in time domain)

η(τ, ν) =

∫ ∞
−∞

∫ ∞
−∞

ρ(τ ′, ν ′)δ(τ − τ ′)eiν(τ−τ ′)dτ ′dν ′ = ρ(τ) (III.1)

The HRR data are formed as the convolution between the first range argument of

ρ(τ, ν) with the measurement kernel (idealized by the delta function). In our case we

want to distinguish range profiles by the target aspect angle at which the data are

collected. Therefore,

ηθ(τ, ν) =

∫ ∞
−∞

∫ ∞
−∞

ρθ(τ
′, ν ′)δ(τ − τ ′)eiν(τ−τ ′)dτ ′dν ′ = ρθ(τ) (III.2)

since the scattering density function ρ(τ ′, ν ′) will depend on target orientation (see

Figure 11 ).

Figure 11. Geometry of an HRR profile at an angle θ. This picture was taken from
[Ref. 11]
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But the function ρθ(τ
′, ν ′) is just a rotated version of the stationary target. If

we assume the coordinate system x − y is fixed to the target and set the scattering

density function in this coordinate system by

ρ(x, y) = ρθ=0(τ
′, ν ′)

then for a general θ it’s easy to see that,

ρθ(τ
′, ν ′) = ρ(−τ ′sinθ + ν ′cosθ, τ ′cosθ + ν ′sinθ)

Using this result in equation III.3 yields

ηθ(τ, ν) =

∫ ∞
−∞

∫ ∞
−∞

ρ(−τ ′sinθ+ ν ′cosθ, τ ′cosθ+ ν ′sinθ)δ(τ − τ ′)eiν(τ−τ ′)dτ ′dν ′ = ρ(τ)

(III.3)

Under the change in variables

τ ′ = −xsinθ + ycosθ

ν ′ = +xcosθ + ysinθ

equation III.3 becomes

ηθ(τ, ν) =

∫ ∞
−∞

∫ ∞
−∞

ρ(x, y)δ(τ + xsinθ − ycosθ)eiν(τ+xsinθ−ycosθ)dxdy

=

∫ ∞
−∞

∫ ∞
−∞

ρ(x, y)δ(τ + xsinθ − ycosθ)dxdy (III.4)

As we can see, this is just a line integral of ρ(x, y) along the line L(τ ; θ) defined

by τ + xsinθ − ycosθ = 0 (because of the δ-function in the integrand). This line is

illustrated in Figure 11. Note also that the argument of the complex exponential is

zero and so doesn’t contribute to the integral.

The ηθ(τ, ν) in equation III.4 is independent of ν and the double integral

restricted to the line L(τ ; θ) or (the equivalent line integral itself) is known as the

Radon Transform of ρ(x, y)[Ref. 11],

{
Rρ
}

(τ, θ) =

∫ ∞
−∞

∫ ∞
−∞

ρ(x, y)δ(τ + xsinθ − ycosθ)dxdy (III.5)
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The factor δ(τ +xsinθ−ycosθ) is zero everywhere except where its argument is zero,

which is along the straight line xsinθ − ycosθ = τ . The straight line L represents a

slit when it is at a perpendicular distance τ from the origin and inclined at an angle

θ to the y-axis. If θ is kept fixed, say a value θ1 while τ is varied, then the integral{
Rρ
}

(τ, θ1) constitutes the projection of the density function ρ(x, y) onto the line

θ = θ1 as a function of τ .

A practical computational method for inversion can be arrived at by Fourier trans-

forming the Radon integral equation, finding a method of solution, and then trans-

forming the steps to end up with a data-plane operations in which numerical Fourier

transformation is actually dispensed with. The inversion procedure derives from a

remarkable relation that exists between Fourier, Abel, and Hankel transforms and

from a generalization known as the Projection-Slice Theorem[Ref. 5]. This theorem

is discussed in the next section.

B. BACKPROJECTION

For every θ define
{
Rρ
}

(τ, θ) = ρθ(τ) of equation 11 to be a function of one

variable τ then τ for each θ. The Fourier transform of ρθ(τ) can be computed as

Fρθ(ω) =
1√
2π

∫ ∞
−∞

ρθ(τ)eiωτdτ

=

∫∫∫ ∞
−∞

ρ(x, y)δ(τ + xsinθ − ycosθ)eiωτdτdxdy

=

∫∫ ∞
−∞

ρ(x, y)eiω(xsinθ−ycosθ)dxdy

=

∫∫ ∞
−∞

ρ(x, y)ei(kxx−kyy)dxdy (III.6)

assuming kx ≡ −ωsinθ and ky ≡ ωcosθ.

We observe that equation III.6 corresponds to a 2D Fourier transform of the

density function ρ(x, y). As is well known, the 2D Fourrier transform is given by

P (kx, ky) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

ρ(x, y)ei(kxx−kyy)dxdy (III.7)
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and so we can conclude

P (−ωsinθ, ωcosθ) =
1√
2π
Fρθ(ω) (III.8)

Equation III.8 is known as the Projection-Slice Theorem, and allows us to determine

ρ(x, y) from the inverse Fourier transform of F (kx, ky). We can use this result to build

an inverse Radon transform for ρ(τ, θ). Using the change of variables (kx, ky) 7→ (ω, θ)

where kx ≡ −ωsinθ and ky ≡ ωcosθ, we obtain

ρ(x, y) =
1

2π

∫∫ ∞
−∞

P (kx, ky)e
i(kxx−kyy)dkxdky

=
1

(2π)3/2

∫ 2π

0

∫ ∞
−∞

Fρθ(ω)e−iω(xsinθ−ycosθ)∂(kx, ky)

∂(ω, θ)
dωdθ

=
1

(2π)3/2

∫ 2π

0

∫ ∞
−∞

Fρθ(ω)e−iω(xsinθ−ycosθ)|ω|dωdθ

=
1

(2π)3/2

∫ 2π

0

∫ ∞
−∞

(
|ω|Fρθ(ω)

)
eiω(−xsinθ+ycosθ)dωdθ (III.9)

The inner integral of equation III.9 is just the inverse Fourier transform of the

product

Q(ω) ≡ ω × {Fρθ(ω)
}

The inverse Fourier transform of Q(ω) is

q(t) =
1√
2π

∫ ∞
−∞

Q(ω)eiωt

and so the equation III.9 can be written as

ρ(x, y) =
1√
2π

∫ 2π

0

q(−xsinθ + ycosθ)dθ (III.10)

where after substitution of Fρθ(ω), we obtain

q(t) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

ρθ(τ)|ω|eiω(t−τ) (III.11)

18



Equation III.10 is called the the backprojection operator and the filtered backprojection

algorithm combines equations III.10 and III.11 to form the an inverse Radon transform

ρ(τ, θ) = ρ(τ)→ ρ(x, y).

Figure 12. Backprojection reconstructs an image by taking each view and smearing
it along the path it was originally acquired.The result image is a blurry version of the
correct image. This picture was taken from [Ref. 15]

Figure 13. Filtered backprojection reconstructs an image by filtering each view before
backprojection. This removes the blurring seen in simple backprojection, and results
in a mathematically exact reconstruction of the image. Filtered backprojection is the
most commonly used algorithm for computed tomography systems. This picture was
taken from [Ref. 15]
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IV. TIME-FREQUENCY METHODS

A. ISAR IMAGING USING TIME FREQUENCY TECH-
NIQUES

The approach to Inverse synthetic aperture radar (ISAR) is exactly the same

as for SAR, but in ISAR we exploit the target’s motion. The goal is to generate

images of moving targets in the range-Doppler plane. Usually the Fourier transform

is used to compute the image, but because of the unpredictable movement of the tar-

get the Doppler-frequency can display nonuniform time variations. To overcome this

time-varying Doppler spectrum we investigate the use of a time-frequency transform.

In this thesis we will examine the performance of two different transforms, the

short time Fourier transform itself and the wavelet transform to obtain ISAR images.

Time-frequency techniques are used to overcome limitations of the standard Fourier

transform. For example, during the collection of data the scattering points must re-

main in the same range cell: if this doesn’t happen, the image will be blurred. This

occurs when scatterers move out of their range cells making our Doppler information

non-linear. Since the Fourier transform requires linear sampling, we can’t compensate

for this effect. To obtain a focussed radar image using the Fourier transform, motion

compensation algorithms are necessary to adjust for scatterer migration. But this

is often not enough because the spectrum can still display non-linear behavior. So,

Doppler tracking and other techniques must be applied. When a target is moving

smoothly, these standard techniques are normally good enough to focus our image and

we can still use the Fourier transform. However, when the target exhibits unexpected

motion, such as rapid maneuvers and acceleration about an axis, the standard motion

compensation algorithms are not enough to focus the image. In this situation, more

advance algorithms for motion compensation are needed [Ref. 16]. However, such

advanced algorithms are not always effective against the image blurring, because the

scatterers may still drift out of their range cells and, as a consequence, their Doppler
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frequency shifts become nonlinear in time. Therefore the image will still come out

blurred after the Fourier transform.

As a matter of fact, the Fourier transform limitations can be mitigated using

the Short Time Fourier Transform (STFT). As we explained before, the Doppler

information is nonlinear with time, therefore a good method to solve the smeared

Fourier frequency spectrum is to apply high-resolution time-frequency transform to

the processing. Using this method, we no long need the motion compensation algo-

rithms because we are no longer using the Fourier transform. This way, unpredictable

Doppler frequency shifts can be overcome without using sophisticated motion com-

pensation algorithms. The use of the STFT will be the first to be applied to our case.

In the same way, another frequency analysis tool can be applied using the Continuous

Wavelet transform (CWT). The wavelet approach offers an alternative path for sig-

nal processing. Essentially, the CWT is the same as the STFT except that any basis

functions can be used (only harmonic functions of constant amplitude and phase are

used by the STFT [Ref. 17]. Another difference between the CWT and the STFT

is the window size: the STFT uses one window analysis with the same width, while

the CWT uses different windows for different frequencies. (Short windows for high

frequencies and long windows for low frequencies.)

1. Short Time Fourier Transform vs. Continuous
Wavelet transform

In the standard FT we assume signals of infinite length with stationary spec-

trum, thus making it not well suited to the detection of time varying spectra. The

STFT on the other hand computes the FT of the signal on a window sliding in time,

thus capturing the non-stationary behavior. The STFT is defined in the following

way

STFT (t, ν) =

∫ ∞
−∞

s(τ)w(τ − t)e−iντdτ (IV.1)

The window w(τ − t) is centered on the time variable t and then shifted the window

through out the signal to obtain the information about the frequency behavior in time
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(see Figure 14) . As far as its application to imaging is concerned STFT is affected

by the uncertainty principle by which the signal cannot be resolved in both time and

frequency (see Figure 15 and Figure 16 ). Also, the STFT is only a window-averaged

frequency spectrum and not an exact estimation of the instantaneous frequency [Ref.

18].

Figure 14. Short time Fourier Transform. This figure was taken from [Ref. 10]

Figure 15. Time/frequency uncertainty of a rectangular window. This figure was
taken from [Ref. 10]
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Figure 16. Basis functions and time/frequency resolution for STFT. This figure was
taken from [Ref. 10]

The best compromise is to have different resolutions at different frequencies

by adapting the window length in time. This is what the CWT tries to accomplish.

CWT (τ, α) =

∫ ∞
−∞

x(t)α0.5ψ(α(t− τ))dt (IV.2)

As we saw before, the STFT has a fixed-length window which is responsible

for the principal limitation of time and frequency resolution due to the uncertainty

principle. Either we resolve in time or we resolve in frequency. In order to circumvent

this issue, we will observe the signal using different window-lenghts because the CWT

allows it. Normally we are interested in the higher frequencies due to rapid function

variation as a function of time. Evidently, it makes some sense to use a long window

for low frequencies and a short window for high frequencies to get high resolution

over all spectrum specially at higher frequencies.
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Figure 17. Basis functions and time/frequency resolution for CWT. This figure was
taken from [Ref. 10]

Figure 18. Basis functions and time/frequency resolution of the STFT and the CWT.
The tiles represent for a given basis functions its concentration in the time-frequency
plane. a) Coverage of the time-frequency plane for the STFT. b) for the CWT c)
Corresponding basis functions for the STFT. d) for the CWT. This figure was taken
from [Ref. 19]
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Figure 19. Division of the frequency domain a) for the STFT (uniform coverage) and
b) for CWT (logarithmic Coverage). This figure was taken from [Ref. 19]

B. EXAMPLE OF A CHIRP USING STFT VS. CWT

We present in Figures 20 and 21 a spectrogram and a scalogram from a chirp

signal of length 2000 samples, where the frequency grows continuously and linearly.

The spectrogram is obtained using a Gaussian-like window and the scalogram is

obtained with a Morlet wavelet (a complex sinusoid windowed with a Gaussian en-

velope). In this way, we can see that for the STFT the width of the frequency line is

always the same as a result of the constant window width and the uniform coverage

in the frequency domain. However, the scalogram with nonlinear (logarithmic) scale

results in a curve instead of a line. Also, we can see that the width of the line is

thiner for high frequencies, a result that reflects the long duration windows in time

for higher frequencies.
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Figure 20. Chirp’s Spectrogram
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V. ISAR IMAGING USING STFT AND CWT

A. BACKHOE DATA DOME

To further examine the potential of using time-frequency methods to produce

ISAR images, we examined simulated data based on the Air Force Research Labora-

tory (AFRL), Backoe Data Dome, Version 1.0.

1. Backoe Data Dome Version 1.0

The Backhoe Data Dome, Version 1.0 consists of simulated wideband (7-13

GHz), full polarization, complex backscatter data from a backhoe loader generated

using a Computer-Aided-Design (CAD) model in free space as shown in Figure 22.

The MATLAB program plotfacet.m available from the Air Force Research Laboratory

Sensor Data Management System was used to plot all 3-D graphics of the backhoe

loader.

Figure 22. CAD Model of Backhoe Loader

The backscatter data consists of over 1,125 Matlab binary files (*.mat files)

in which each file has the k - space data from with elevation between 18 and 42

degrees and Azimuth between 66 and 114 degrees. The filenames are indicative of

the data they contain. backhoe-el042-az109.mat, for example, contains the data with

elevation between 29.5 and 30.5 and azimuth between 89.5 and 90.5. The viewing

hemisphere consists of 14 samples per degree in both azimuth and elevation. There
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is one sample every 11.75 MHz over the 6 GHz bandwidth and full polarization

information; i.e. horizontal linear polarization on transmit and receive (HH), vertical

linear polarization on transmit and receive (VV), and horizontal linear polarization

on transmit and vertical linear polarization on receive (HV).

Figure 23. Backhoe Data Dome Representation in k-Space

With the methods described in the preceding Chapters, the STFT and CWT

will be applied to the 3-D k-space data for the different test cases, with the following

setup in the following orientations and using the specified polarization:

Test Case 1: Data collected over the following interval (horizontal Path):

Elevation=42deg and 95deg ≤ Azimuth ≤ 102deg.

Test Case 2: Data collected over the following interval (curve Path): 38≤ El-

evation ≤ 42deg and 95deg ≤ Azimuth ≤ 99deg.
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In all cases the center frequency chosen was 9.25GHz with a Bandwidth of

500 MHz. We chose 500 MHz because it’s a more realistic case, and is representative

of existing radars in the world. With respect to Polarization, this will not be very

important in our simulation but, of course, Polarization matters in the case we have

a Radar with cross-polarization capabilities. In this case, the amount of information

available to reconstruct the image will be greater than with just vertical or horizontal

polarization. Cross-pol images will be briefly analyzed below.

B. ALGORITHM FOR ISAR IMAGING USING TIME-
FREQUENCY METHODS

After the complex data is extracted from our database, we construct a matrix

in which the N columns have the range information and the M rows have the cross-

range information.

step 1. We do the Fast Fourier Transform of the rows to obtain our range pro-

files. For each row X(l) = FFT [xi(n)], n = 1, 2, ...,N; i = 1, 2, ...,M.

step 2. Compute the STFT or CWT using different windows type, sizes and scales.

Y (m) = STFT [yi(n)] or Y (m) = CWT [yi(n)], n=1,2,...,N ; i=1,2,...,M.

step 3. FInd the absolute value for each entry of the matrix and plot it.

Step 1 to 3 form the algorithm for ISAR imaging using the two time-frequency

methods: first Short Time Fourier Transform; and second the Continuous Wavelet

Transform.
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C. TEST CASE 1 : 95◦ ≤ θAZIMUTH ≤ 102◦, φELEV ATION = 42◦

Figure 24. ISAR image using STFT with a hamming window with 20 points of size
and 50% of overlaping (Horizontal Polarization) - (9th frame)

Figure 25. ISAR image using STFT with a hamming window, size 40 points and 50
percent of overlapping (Horizontal Polarization) - (2th frame)

We can already observe that when we increase the window size the image is going to

display better resolution.
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Figure 26. ISAR image using STFT with a hamming window, size 50 points and 50
percent of overlapping (Horizontal Polarization) - (3th frame)

Figure 27. ISAR image using STFT with a hamming window, size 60 points and 50
percent of overlapping (Horizontal Polarization) - (2th frame)
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Figure 28. ISAR image using STFT with a hamming window, size 80 points and 50
percent of overlapping(Horizontal Polarization) - (1th frame)

Figure 29. ISAR image using CWT with a mexican hat window, using a scale of 1:5
(Horizontal Polarization)
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Figure 30. ISAR image using CWT with a mexican hat window, using a scale of 3:6
(Horizontal Polarization)

Figure 31. ISAR image using CWT with a mexican hat window, using a scale of
10:13 (Horizontal Polarization)

Figure 32. ISAR image using CWT with a Morlet window (Horizontal Polarization)
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Figure 33. ISAR image using CWT with a Daubechies 2 window (Horizontal Polar-
ization)

D. TEST CASE 2 : 38≤ ELEVATION ≤ 42DEG AND
95DEG ≤ AZIMUTH ≤ 99DEG.

When we use STFT we’ll observe the resolution increasing when we increase the

window’s size. When we use CWT we can observe that when we change scale we can

loose information or improve the resolution of the STFT approach.

Figure 34. ISAR image using STFT with a hamming window, size 20 points and 50
percent of overlapping (Horizontal Polarization) - (8th frame)
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Figure 35. ISAR image using STFT with a hamming window, size 40 points and 50
percent of overlapping (Horizontal Polarization) - (3th frame)

Figure 36. ISAR image using STFT with a hamming window, size 50 points and 50
percent of overlapping (Horizontal Polarization) - (2th frame)

37



Figure 37. ISAR image using STFT with a hamming window, size 60 points and 50
percent of overlapping (Horizontal Polarization) - (2th frame)

Figure 38. ISAR image using STFT with a hamming window, size 80 points and 50
percent of overlapping (Horizontal Polarization) - (1th frame)
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Figure 39. ISAR image using STFT with a hamming window, size 100 points and 50
percent of overlapping (Horizontal Polarization) - (1th frame)

Figure 40. ISAR image using CWT with a mexican hat window, using a scale of 1:5
(Horizontal Polarization)

39



Figure 41. ISAR image using CWT with a mexican hat window, using a scale of 3:6
(Horizontal Polarization)

Figure 42. ISAR image using CWT with a mexican hat window, using a scale of
10:13 (Horizontal Polarization)

Figure 43. ISAR image using CWT with a Morlet window (Horizontal Polarization)
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Figure 44. ISAR image using CWT with a Daubechies 2 window (Horizontal Polar-
ization)

Figure 45. ISAR image using STFT with a hamming window, size 40 points and 50
percent of overlapping (Cross Polarization) - (3th frame)
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VI. CONCLUSIONS

Production of ISAR images using time-frequencies methods instead of ad-

vanced algorithms for motion compensation has been analyzed in this thesis because

of their potential for fast processing speeds. In military applications, time is always

an important variable. There are some situations in which seconds could mean lives.

The use of Fourier and wavelet transforms applied to ISAR imaging can be very im-

portant for identifying flying targets in a very fast way.

We compared the ISAR images produced using the STFT and the CWT. To

accomplish this objective, complex backscatter data from a backhoe loader was used

to exercise the algorithms.

The big problem with the Fourier approach is its limitation concerning the

uncertainty principle: it’s not possible to resolve both time and frequency with arbi-

trary accuracy. On the other hand, the window width can be adjusted for different

frequencies in the CWT, so a good improvement in resolution can be obtained. With

the ISAR imaging model, if the target drastically changes it’s flight path the image

will always display some artifacts due to this change. In this situation, we observed

that we can have some improvement using the CWT instead of the STFT. Because

of its higher resolution for higher frequencies some of the artifacts are eliminated,

a property that may allow us to increase the probability of identification (observe

Figure 40 and Figure 37).

If a target presents a complex path, with fast maneuvers the images will always be

displayed as blurred and with some extra scattering points due to aspect change of

the target. But, using the CWT we can obtain better results and increase the quality

of the image. In all the images we could observed that the CWT had superior reso-

lution in the test cases. Since we can adjust the scale in the wavelet transform , we

can always tune the scale to obtain better results in different flight paths, different

speeds and different distances from the radar. We have more freedom in this method
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than in the Fourier Transform approach. Thinking about the future, using some post

processing technics we can improve the image. We can use noise filters, erosion tech-

nics and others. We should also exercise the algorithms with real data. Following

that, improving the algorithms to be used receiving real time data from the radar.

This will allow us to obtain different images each 2 to 3 sec and with this data we

can better analyze and identify the target. This also allow us to reconstruct a movie

from the data to see each aspect of the target during the time we were collecting the

data.
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APPENDIX A. MATLAB CODE FOR TEST

CASE 1

clear all;

A95=getbackhoe(95,42);

A96=getbackhoe(96,42);

A97=getbackhoe(97,42);

A98=getbackhoe(98,42);

A99=getbackhoe(99,42);

A100=getbackhoe(100,42);

A101=getbackhoe(101,42);

A102=getbackhoe(102,42);

%elv=42.5; 94.5<Az>95.5

B95=A95.hh(:,1,:);

Xk=[];

MN95=[];

for i=1:14;

f=170:214;

Xk=B95(f,1,i);

MN95=[MN95,Xk];

end

%elv=42.5; 95.5<Az>96.5

B96=A96.hh(:,1,:);

Xk=[];

MN96=[];

for i=1:14;

f=170:214;

Xk=B96(f,1,i);

MN96=[MN96,Xk];

end

%elv=42.5; 96.5<Az>97.5

B97=A97.hh(:,1,:);

Xk=[];

MN97=[];

for i=1:14;

f=170:214;

Xk=B97(f,1,i);

MN97=[MN97,Xk];
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end

%elv=42.5; 97.5<Az>98.5

B98=A98.hh(:,1,:);

Xk=[];

MN98=[];

for i=1:14;

f=170:214;

Xk=B98(f,1,i);

MN98=[MN98,Xk];

end

%elv=42.5; 98.5<Az>99.5

B99=A99.hh(:,1,:);

Xk=[];

MN99=[];

for i=1:14;

f=170:214;

Xk=B99(f,1,i);

MN99=[MN99,Xk];

end

%elv=42.5; 99.5<Az>100.5

MN100=[];

Xk=[];

B100=A100.hh(:,1,:);

for i=1:14;

f=170:214;

Xk=B100(f,1,i);

MN100=[MN100,Xk];

end

%elv=42.5; 100.5<Az>101.5

B101=A101.hh(:,1,:);

Xk=[];

MN101=[];

for i=1:14;

f=170:214;

Xk=B101(f,1,i);

MN101=[MN101,Xk];

end

%elv=42.5; 101.5<Az>102.5
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B102=A102.hh(:,1,:);

MN102=[];

Xk=[];

for i=1:14;

f=170:214;

Xk=B102(f,1,i);

MN102=[MN102,Xk];

end

% Data MAtrix formation

MN2 =[MN95, MN96, MN97, MN98, MN99, MN100, MN101, MN102];

% Display data matrix

% p2=abs(MN2);

% figure, imshow(p2,[]);

% xlabel(’theta - 95 to 102, phi=42deg’);

% ylabel(’frequency (amplitude)’);

% Range profiles calculation

DR=[];

for i=1:112;

XR=fftshift(fft(MN2(:,i)));

DR=[DR,XR];

end

%Display range profiles

% DRABS=abs(DR);

% figure, imshow(DRABS,[]);

% Apply Short-time Fourier transform to generate ISAR Image

Sf=[];

L=32;

noverlap=16;

for i=1:45;

S=spectrogram(DR(i,:),hamming(80),40);

Sf(:,:,i)=fftshift(S);

end

SFABS=abs(Sf);

%Display ISAR Image

Image = [SFABS(:,:,1) SFABS(:,:,2) SFABS(:,:,3) SFABS(:,:,4) SFABS(:,:,5)
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SFABS(:,:,6) SFABS(:,:,7) SFABS(:,:,8) SFABS(:,:,9) SFABS(:,:,10)

SFABS(:,:,11) SFABS(:,:,12) SFABS(:,:,13) SFABS(:,:,14) SFABS(:,:,15)

SFABS(:,:,16) SFABS(:,:,17) SFABS(:,:,18) SFABS(:,:,19) SFABS(:,:,20)

SFABS(:,:,21) SFABS(:,:,22) SFABS(:,:,23) SFABS(:,:,24) SFABS(:,:,25)

SFABS(:,:,26) SFABS(:,:,27) SFABS(:,:,28) SFABS(:,:,29) SFABS(:,:,30)

SFABS(:,:,31) SFABS(:,:,32) SFABS(:,:,33) SFABS(:,:,34) SFABS(:,:,35)

SFABS(:,:,36) SFABS(:,:,37) SFABS(:,:,38) SFABS(:,:,39) SFABS(:,:,40)

SFABS(:,:,41) SFABS(:,:,42) SFABS(:,:,43) SFABS(:,:,44) SFABS(:,:,45)];

Imagew= Image/(max(max(Image)));

figure , imshow(Imagew,[0 1]);

%colormap(1-gray);

ylabel(’Cross-range’);

xlabel(’Down-Range’);

%Choosing frame to display

Image2=[];

for i=1:45;

Imf=SFABS(:,1,i);

Image2=[Image2,Imf];

end

%Display ISAR IMAGE

figure , imshow(Image2,[]);

ylabel(’Cross-range’);

xlabel(’Down-range1’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Algorithm 2 %%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all;

A95=getbackhoe(95,42);

A96=getbackhoe(96,42);

A97=getbackhoe(97,42);

A98=getbackhoe(98,42);

A99=getbackhoe(99,42);

A100=getbackhoe(100,42);

A101=getbackhoe(101,42);

A102=getbackhoe(102,42);

%elv=42.5; 94.5<Az>95.5

B95=A95.hh(:,1,:);

Xk=[];

MN95=[];

for i=1:14;
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f=170:214;

Xk=B95(f,1,i);

MN95=[MN95,Xk];

end

%elv=42.5; 95.5<Az>96.5

B96=A96.hh(:,1,:);

Xk=[];

MN96=[];

for i=1:14;

f=170:214;

Xk=B96(f,1,i);

MN96=[MN96,Xk];

end

%elv=42.5; 96.5<Az>97.5

B97=A97.hh(:,1,:);

Xk=[];

MN97=[];

for i=1:14;

f=170:214;

Xk=B97(f,1,i);

MN97=[MN97,Xk];

end

%elv=42.5; 97.5<Az>98.5

B98=A98.hh(:,1,:);

Xk=[];

MN98=[];

for i=1:14;

f=170:214;

Xk=B98(f,1,i);

MN98=[MN98,Xk];

end

%elv=42.5; 98.5<Az>99.5

B99=A99.hh(:,1,:);

Xk=[];

MN99=[];

for i=1:14;

f=170:214;

Xk=B99(f,1,i);
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MN99=[MN99,Xk];

end

%elv=42.5; 99.5<Az>100.5

MN100=[];

Xk=[];

B100=A100.hh(:,1,:);

for i=1:14;

f=170:214;

Xk=B100(f,1,i);

MN100=[MN100,Xk];

end

%elv=42.5; 100.5<Az>101.5

B101=A101.hh(:,1,:);

Xk=[];

MN101=[];

for i=1:14;

f=170:214;

Xk=B101(f,1,i);

MN101=[MN101,Xk];

end

%elv=42.5; 101.5<Az>102.5

B102=A102.hh(:,1,:);

MN102=[];

Xk=[];

for i=1:14;

f=170:214;

Xk=B102(f,1,i);

MN102=[MN102,Xk];

end

% Data MAtrix formation

MN2 =[MN95, MN96, MN97, MN98, MN99, MN100, MN101, MN102];

% Display data matrix

%p2=abs(MN2);

% figure, imshow(p2,[]);

% xlabel(’theta - 95 to 102, phi=42deg’);

% ylabel(’frequency (amplitude)’);

% Range profiles calculation
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RP=[];

for i=1:112;

XR=fftshift(fft2(MN2(:,i)));

RP=[RP,XR];

end

%Pading array

RFP = padarray(RP,[8 8]);

% Apply Short-time Wavelet transform to generate ISAR Image

Sf=[];

F=[];

L=32;

noverlap=16;

cd=[];

for i = 1:61;

%c = cwt(RFP(i,:),1:25,’sym4’);

% c = cwt(RFP(i,:),[3 18 12.9 7 1.5],’db2’);

% c = cwt(RFP(i,:),[16 8 6:-1:1],’morl’); %16 8 6

c = cwt(RFP(i,:),1:5,’mexh’); %2:5

Sf(:,:,i) =ifftshift(ifft2(c)); %coefficients

end

SFABS=abs(Sf);

%Display ISAR Image

Image = [SFABS(:,:,1); SFABS(:,:,2); SFABS(:,:,3); SFABS(:,:,4); SFABS(:,:,5);

SFABS(:,:,6); SFABS(:,:,7); SFABS(:,:,8); SFABS(:,:,9); SFABS(:,:,10);

SFABS(:,:,11); SFABS(:,:,12); SFABS(:,:,13); SFABS(:,:,14); SFABS(:,:,15);

SFABS(:,:,16); SFABS(:,:,17); SFABS(:,:,18); SFABS(:,:,19); SFABS(:,:,20);

SFABS(:,:,21); SFABS(:,:,22); SFABS(:,:,23); SFABS(:,:,24); SFABS(:,:,25);

SFABS(:,:,26); SFABS(:,:,27); SFABS(:,:,28); SFABS(:,:,29); SFABS(:,:,30);

SFABS(:,:,31); SFABS(:,:,32); SFABS(:,:,33); SFABS(:,:,34); SFABS(:,:,35);

SFABS(:,:,36); SFABS(:,:,37); SFABS(:,:,38); SFABS(:,:,39); SFABS(:,:,40);

SFABS(:,:,41); SFABS(:,:,42); SFABS(:,:,43); SFABS(:,:,44); SFABS(:,:,45)];

Imagew= Image/(max(max(Image)));

%Imag = imadjust(Imagew,[.07;.5],[0;1]);

%Imag = histeq(Imagew,64);

%Imag = adapthisteq(Imagew);

figure, imshow(Imagew,[]);

% colormap(1-gray);

ylabel(’Range’);
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xlabel(’Down-range’);

%Choosing frame to display

Image2=[];

for i=1:45;

Imf2=SFABS(2,:,i);

Image2=[Image2;Imf2];

end

%Display ISAR IMAGE

figure , imshow(Image2,[]);

ylabel(’Cross-range’);

xlabel(’Down-range’);
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APPENDIX B. MATLAB CODE FOR TEST

CASE 2

clear all;

% Extraction data from database

A95=getbackhoe(95,38);

A96=getbackhoe(96,38);

A97=getbackhoe(97,38);

A98=getbackhoe(98,38);

A99=getbackhoe(99,39);

A100=getbackhoe(99,40);

A101=getbackhoe(99,41);

A102=getbackhoe(99,42);

%elv=38.5; 94.5<Az>95.5

B95=A95.hh(:,1,:);

Xk=[];

MN95=[];

for i=1:14;

f=170:214;

Xk=B95(f,1,i);

MN95=[MN95,Xk];

end

%elv=38.5; 95.5<Az>96.5

B96=A96.hh(:,1,:);

Xk=[];

MN96=[];

for i=1:14;

f=170:214;

Xk=B96(f,1,i);

MN96=[MN96,Xk];

end

%elv=38.5; 96.5<Az>97.5

B97=A97.hh(:,1,:);

Xk=[];

MN97=[];

for i=1:14;

f=170:214;

Xk=B97(f,1,i);
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MN97=[MN97,Xk];

end

%elv=38.5; 97.5<Az>98.5

B98=A98.hh(:,1,:);

Xk=[];

MN98=[];

for i=1:14;

f=170:214;

Xk=B98(f,1,i);

MN98=[MN98,Xk];

end

%38.5<elv>39.5; Az=99.5

B99=A99.hh(:,:,7);

Xk=[];

MN99=[];

for i=1:14;

f=170:214;

Xk=B99(f,i,1);

MN99=[MN99,Xk];

end

%39.5<elv>40.5; Az=99.5

MN100=[];

Xk=[];

B100=A100.hh(:,:,7);

for i=1:14;

f=170:214;

Xk=B100(f,i,1);

MN100=[MN100,Xk];

end

%40.5<elv>41.5; Az=99.5

B101=A101.hh(:,:,7);

Xk=[];

MN101=[];

for i=1:14;

f=170:214;

Xk=B101(f,i,1);

MN101=[MN101,Xk];
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end

%41.5<elv>42.5; Az=99.5

B102=A102.hh(:,:,7);

MN102=[];

Xk=[];

for i=1:14;

f=170:214;

Xk=B102(f,i,1);

MN102=[MN102,Xk];

end

% Data Matrix formation

MN2 =[MN95, MN96, MN97, MN98, MN99, MN100, MN101, MN102];

%Plot data Matrix

p2=abs(MN2);

figure, imshow(p2,[]);

xlabel(’theta - 95 to 102, phi=42deg’);

ylabel(’frequency (amplitude)’);

%Range profiles calculation

DR=[];

for i=1:112;

XR=fftshift(fft(MN2(:,i)));

DR=[DR,XR];

end

% Display Range-profiles

% DRABS=abs(DR);

% figure, imshow(DRABS,[]);

% Apply Fourrier tranform to all lines to form the ISAR image

Sf=[];

L=32;

noverlap=16;

for i=1:45;

S=spectrogram(DR(i,:),hamming(100),50);

Sf(:,:,i)=fftshift(S);

end

SFABS=abs(Sf);
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Image = [SFABS(:,:,1) SFABS(:,:,2) SFABS(:,:,3) SFABS(:,:,4) SFABS(:,:,5)

SFABS(:,:,6) SFABS(:,:,7) SFABS(:,:,8) SFABS(:,:,9) SFABS(:,:,10)

SFABS(:,:,11) SFABS(:,:,12) SFABS(:,:,13) SFABS(:,:,14) SFABS(:,:,15)

SFABS(:,:,16) SFABS(:,:,17) SFABS(:,:,18) SFABS(:,:,19) SFABS(:,:,20)

SFABS(:,:,21) SFABS(:,:,22) SFABS(:,:,23) SFABS(:,:,24) SFABS(:,:,25)

SFABS(:,:,26) SFABS(:,:,27) SFABS(:,:,28) SFABS(:,:,29) SFABS(:,:,30)

SFABS(:,:,31) SFABS(:,:,32) SFABS(:,:,33) SFABS(:,:,34) SFABS(:,:,35)

SFABS(:,:,36) SFABS(:,:,37) SFABS(:,:,38) SFABS(:,:,39) SFABS(:,:,40)

SFABS(:,:,41) SFABS(:,:,42) SFABS(:,:,43) SFABS(:,:,44) SFABS(:,:,45)];

Imagew= Image/(max(max(Image)));

figure, imshow(Imagew,[0 1]);

ylabel(’Cross Range’);

xlabel(’Range’);

% Choose one frame to display

Image2=[];

for i=1:45;

Imf=SFABS(:,1,i);

Image2=[Image2,Imf];

end

% Display frame

figure, imshow(Image2,[]);

ylabel(’Range’);

xlabel(’Cross Range’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%% Algorithm 2 %%%%%%%%%%%%%%%%%%%%%%%%%%

clear all;

A95=getbackhoe(95,38);

A96=getbackhoe(96,38);

A97=getbackhoe(97,38);

A98=getbackhoe(98,38);

A99=getbackhoe(99,39);

A100=getbackhoe(99,40);

A101=getbackhoe(99,41);

A102=getbackhoe(99,42);

%elv=38.5; 94.5<Az>95.5

B95=A95.hh(:,1,:);
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Xk=[];

MN95=[];

for i=1:14;

f=170:214;

Xk=B95(f,1,i);

MN95=[MN95,Xk];

end

%elv=38.5; 95.5<Az>96.5

B96=A96.hh(:,1,:);

Xk=[];

MN96=[];

for i=1:14;

f=170:214;

Xk=B96(f,1,i);

MN96=[MN96,Xk];

end

%elv=38.5; 96.5<Az>97.5

B97=A97.hh(:,1,:);

Xk=[];

MN97=[];

for i=1:14;

f=170:214;

Xk=B97(f,1,i);

MN97=[MN97,Xk];

end

%elv=38.5; 97.5<Az>98.5

B98=A98.hh(:,1,:);

Xk=[];

MN98=[];

for i=1:14;

f=170:214;

Xk=B98(f,1,i);

MN98=[MN98,Xk];

end

%38.5<elv>39.5; Az=99.5

B99=A99.hh(:,:,7);

Xk=[];

MN99=[];
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for i=1:14;

f=170:214;

Xk=B99(f,i,1);

MN99=[MN99,Xk];

end

%39.5<elv>40.5; Az=99.5

MN100=[];

Xk=[];

B100=A100.hh(:,:,7);

for i=1:14;

f=170:214;

Xk=B100(f,i,1);

MN100=[MN100,Xk];

end

%40.5<elv>41.5; Az=99.5

B101=A101.hh(:,:,7);

Xk=[];

MN101=[];

for i=1:14;

f=170:214;

Xk=B101(f,i,1);

MN101=[MN101,Xk];

end

%41.5<elv>42.5; Az=99.5

B102=A102.hh(:,:,7);

MN102=[];

Xk=[];

for i=1:14;

f=170:214;

Xk=B102(f,i,1);

MN102=[MN102,Xk];

end

% Data Matrix formation

MN2 =[MN95, MN96, MN97, MN98, MN99, MN100, MN101, MN102];

%Display data matrix

p2=abs(MN2);

figure, imshow(p2,[]);
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xlabel(’theta - 95 to 102, phi=42deg’);

ylabel(’frequency (amplitude)’);

%Range profiles calculation

RP=[];

for i=1:112;

XR=fftshift(fft2(MN2(:,i)));

RP=[RP,XR];

end

% Array Padding

RFP = padarray(RP,[8 8]);

%% Apply Wavelet tranform to all lines to form the ISAR image

Sf=[];

F=[];

L=32;

noverlap=16;

cd=[];

for i = 1:61;

%c = cwt(RFP(i,:),1:25,’sym4’);

c = cwt(RFP(i,:),[3 18 12.9 7 1.5],’db2’);

% c = cwt(RFP(i,:),[16 8 6:-1:1],’morl’);

% c = cwt(RFP(i,:),10:13,’mexh’);

Sf(:,:,i) =ifftshift(ifft2(c)); %coefficients

end

SFABS=abs(Sf);

%Display ISAR image

Image = [SFABS(:,:,1); SFABS(:,:,2); SFABS(:,:,3); SFABS(:,:,4); SFABS(:,:,5);

SFABS(:,:,6); SFABS(:,:,7); SFABS(:,:,8); SFABS(:,:,9); SFABS(:,:,10);

SFABS(:,:,11); SFABS(:,:,12); SFABS(:,:,13); SFABS(:,:,14); SFABS(:,:,15);

SFABS(:,:,16); SFABS(:,:,17); SFABS(:,:,18); SFABS(:,:,19); SFABS(:,:,20);

SFABS(:,:,21); SFABS(:,:,22); SFABS(:,:,23); SFABS(:,:,24); SFABS(:,:,25);

SFABS(:,:,26); SFABS(:,:,27); SFABS(:,:,28); SFABS(:,:,29); SFABS(:,:,30);

SFABS(:,:,31); SFABS(:,:,32); SFABS(:,:,33); SFABS(:,:,34); SFABS(:,:,35);

SFABS(:,:,36); SFABS(:,:,37); SFABS(:,:,38); SFABS(:,:,39); SFABS(:,:,40);

SFABS(:,:,41); SFABS(:,:,42); SFABS(:,:,43); SFABS(:,:,44); SFABS(:,:,45)];

Imagew= Image/(max(max(Image)));

figure, imshow(Imagew,[]);

ylabel(’Range1’);
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xlabel(’Doppler frequency’);

%Display ISAR Image

Image2=[];

for i=1:45;

Imf2=SFABS(1,:,i);

Image2=[Image2;Imf2];

end
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